6. Nintendo brand's value decreased by 11.2% from 2002 to 2003. Assume this continues. If the company had a value of $\$ 9,220,000$ in 2002, write an equation for the value of Nintendo for t years after 2002 .
7. \qquad
8. A $\$ 10,500$ investment has a 15% loss each year. Determine the value of the investment after each of the following.

Which Formula: \qquad
A. 1 year \qquad B. 2 years \qquad
C. 4 years \qquad D. 10 years \qquad

Independent Practice: Exponential Growth and Decay

1. Gina deposited $\$ 1500$ in an account that pays 4% interest a year. Which formula models what it will be the worth in 2 years if she makes no deposits and no withdrawals?
A. $y=1500(1.04)^{2}$
B. $y=1500(.96)^{2}$
Growth OR Decay
2. Franklin Middle school had 130 members in its book club in 2011. If it has grown by about 3.5% each year, how many members does it have in 2014 ?
3. \qquad
4. A car sells for $\$ 25,000$. If the rate of depreciation is 15%, what is the value of the car after 7 years?
5. \qquad
6. Tim bought a tractor in 1995 that cost him $\$ 45,000$ and decreases in value 10% each year. If he wants to sell it this year (2007), how much will it be worth?
7. \qquad
8. In 1969, the Antique Automobile Club of America had 23,000 members. It grew an average of 5\% per year through 1985. Assuming this continued what would the membership be in 2004?
9. \qquad

Write an exponential function to model each situation. Find each amount after the specified time.
6. The starting salary for a new employee is $\$ 25,000$. The salary for this employee increases by 8% per year. What is the salary after each of the following?

Which Formula: \qquad
A. 1 year
B. 3 years \qquad
C. 5 years
D. 15 years \qquad
7. Suppose the same conditions from \#6 are applied to someone with a starting salary of \$32,000. What is the salary after each of the following?

Which Formula: \qquad
A. 1 year
B. 3 years \qquad
C. 5 years
D. 15 years \qquad
8. Looking at \#6 and \#7, what part of the formula changed? \qquad
9. Fill in the following chart:

Function	Initial Amount	Y-Intercept	Growth or Decay	Percent Rate
$y=.35^{t}$				
$y=5(0.5)^{3 t}$				
$y=(1.004)^{\frac{2}{3} t}$				
$y=6\left(.355^{\frac{1}{2} t}\right.$				
$y=15(1.2)^{3 t}$				
$y=24\left(\frac{5}{4}\right)^{2 t}$				

