Reteaching 11-5

OBJECTIVE: Writing the equation of a circle

MATERIALS: None

Example

Find the equation of the circle whose center is (-5, 2) and that passes through (3,3).

Use the center and point to find the radius.

$$r = \sqrt{(-5-3)^2 + (2-3)^2}$$

$$r = \sqrt{(-8)^2 + (-1)^2}$$

Distance Formula

$$r = \sqrt{(-8)^2 + (-1)^2}$$

$$r = \sqrt{65}$$

With $r = \sqrt{65}$ and center at (-5, 2), the circle has the equation

$$(x - (-5))^2 + (y - 2)^2 = (\sqrt{65})^2$$

Simplified, this becomes $(x + 5)^2 + (y - 2)^2 = 65$.

Exercises

Find the equation of the circle whose center and radius are given.

1. center
$$(3, 11)$$
 radius = 2

2. center
$$(-5, 0)$$
 radius = 15

3. center
$$(6, -6)$$
 radius = $\sqrt{7}$

Find the equation of the circle that passes through the point (-2, -4) with the given center.

4.
$$C(0,0)$$

5.
$$C(-2, -2)$$

6.
$$C(3,1)$$

Find the equation of each circle described.

7. The circle has center (5, 2) and diameter 12.

8. The endpoints of the circle's diameter are the points (4, -3) and (4, 7).

9. The endpoints of the circle's diameter are the points (2,6) and (-6,0).

Identify the center and radius of each circle.

10.
$$(x + 3)^2 + (y + 5)^2 = 25$$

11.
$$x^2 + y^2 = 0.04$$

12.
$$(x-4)^2 + y^2 = 6$$

13.
$$\frac{(x-3)^2}{2} + \frac{(y-5)^2}{2} = 8$$